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Abstract

In this paper, we describe the Color Image Fidelity
Assessor (CIFA) which extends Taylor et al' s achromatic
IFA. The CIFA is a visual model that assesses perceived
image fidelity in three channels: luminance and two oppo-
nent chromatic channels: red-green and blue-yellow. We
introduce a novel color descriptor that we call chromatic
difference to measure the spatial interaction between col-
ors in the chromatic channels. A set of discrimination ex-
periments is presented that use stimuli based on receptor
fields observed in the mammalian visual system. Differ-
ence thresholds measured in these experiments are incor-
porated in the CIFA look-up tables. Finally, we show an
example illustrating predictions of CIFA for a hue-distorted
image.

1. Introduction

Perceived image fidelity is a measure of the visual sim-
ilarity between two images. Two images are considered
to be visually identical if no difference between them can
be detected by human observers. Since the goal of many
imaging systems and image processing algorithms is visu-
ally lossless reproduction, it is very important to be able
to evaluate the visual differences accurately. The intent of
an image fidelity assessor is to serve this purpose without
actual human observers and to ultimately yield informa-
tion that could be provided to the designer to improve an
imaging system or processing algorithm.

One simple approach is to compute root-mean-squared
error (RMSE) between the original image and the repro-
duction, in an appropriate space, such as CIE L∗a∗b∗. How-
ever, it is well known that this measure provides an inade-
quate estimate of perceived image fidelity. A more logical
approach is to use a visual model which incorporates the
known properties of the structure and functioning of the
human visual system.

The image fidelity assessor (IFA) proposed by Taylor
et al1 is one of the many models for measuring perceived
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achromatic image fidelity2, 3 that has attempted to incorpo-
rate the results from electrophysiological and psychophys-
ical experiments. This model was strongly in�uenced by
Daly's Visual Difference Predictor2 (VDP) and Lubin's Vi-
sual Discrimination Model3 (VDM). The main feature that
distinguishes the achromatic IFA from the VDP or VDM is
its ability to avoid an input/output mismatch in the model1, 4.

In this paper, we develop a color image fidelity asses-
sor (CIFA) based on Taylor et al' s achromatic IFA. The
extension involves adding two opponent channels: red-
green (R-G) and blue-yellow (B-Y). Properties of these
channels agree with the properties of the opponent chan-
nels in the human visual system as described by Hurvich
and Jameson5. The CIFA operates in a way that is simi-
lar to most visual models for image fidelity assessment. It
accepts two images and several viewing parameters as the
input and produces a set of probability maps as the output.
At each pixel, these maps predict the probability that a hu-
man observer would notice a difference between the two
input images in the luminance, red-green, or blue-yellow
channels.

In 1998, Jin el al proposed a color image fidelity asses-
sor called the Color Visual Difference Model6 (CVDM). It
is a color extension of VDP based on spatial CIE L∗a∗b∗

model7. Conceptually, this model is similar to our CIFA.
Both models use opponent-color coordinates, and are color
extensions of achromatic visual models that attempt to build
from the results of physiological and psychophysical ex-
periments. There are, however, several differences between
the two models. The first difference is related to the in-
put/output mismatch. The CIFA was designed to more
closely link the structure of the model and the psychophys-
ical data used by the model. Second, the CIFA employs
novel spatial opponent features to characterize the spatial
interaction of colors both in analyzing the images to be
compared and in creating physical stimuli for the psycho-
physical experiments. Third, the CIFA uses normalization
of chromatic responses to remove the dependency on the
luminance level in these channels. This normalization pro-
cess not only simplifies the parameter space needed to be
explored in our psychophysical experiment; it also reduces
the dimension of the psychometric look-up table in the
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chromatic IFAs.
This paper is organized as follows. In Sec. 2 we in-

troduce a novel spatial opponent feature called chromatic
difference. In Sec. 3 we describe the structure of the CIFA.
In Sec. 4 we describe a psychophysical experiment de-
signed to determine parameters within the chromatic IFAs.
In Sec. 5 we present results of a simulation experiment in
which the CIFA was applied to an image with hue-distortion.
Sec. 6 presents our conclusions.

2. Chromatic Difference

Without loss of generality, we assume that all images to be
compared are calibrated to the CIE XYZ space. The R-G
and B-Y opponent responses can be computed from XYZ
as follows7:
[

O2

O3

]
=

[
0.449 −0.290 0.077
0.086 −0.590 0.501

] 


X
Y
Z


 ; (1)

Here, O2 is the opponent response in the R-G channel, O3

is the opponent response in the B-Y channel (O1 in our
model is equivalent to luminance as measured by Y ).

Next, we normalize O2 and O3 as follows:

(o2, o3) = (O2/Y, O3/Y ). (2)

Here, (o2, o3) are the normalized opponent responses in
the R-G and B-Y channels. We refer to (o2, o3) as the R-G
and B-Y opponent chromaticities. The normalized chan-
nels (o2, o3), unlike the unnormalized channels (O2, O3),
are insensitive to luminance changes, and thus provide a
more adequate representation of chromaticities.

It is known that the visual system is sensitive to con-
trast of luminance rather than luminance itself. In this pa-
per, we use the luminance contrast definition from Taylor
et al1 for the achromatic channel in CIFA. This definition
is a generalization of Michelson contrast for complex im-
ages. For chromatic channels, we introduce a novel color
descriptor that we call chromatic difference. It is intended
to play the same role as luminance contrast in the achro-
matic response. A chromatic difference in the R-G (c2) or
B-Y channel (c3) is computed as:

ci = (omax
i − omin

i )/2 i = 2, 3. (3)

By definition, it is a measure of the chromaticity variation
from the average chromaticity of a surrounding area in a
given channel (R-G or B-Y).

In the next section, we describe the structure of the
CIFA and how it transforms two complex images into units
of localized chromatic difference and luminance contrast.
These units are then converted into probability maps based
on thresholds measured in psychophysical experiments.
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Figure 1: Block diagram of the Image Fidelity Assessor.

3. The Color Image Fidelity Assessor

The CIFA is a color extension of the achromatic IFA pro-
posed by Taylor et al1. It consists of three components: an
achromatic IFA and two chromatic IFAs, namely the R-G
IFA and the B-Y IFA. To evaluate perceived image fidelity
between two images, both images are first transformed to
the opponent-color representation described in Eq. (1) of
Sec. 2. The image pair in each opponent channel is then
processed by the corresponding IFA to provide the proba-
bility map that a human observer will see the differences
between the two images along the given opponent axis.

Figure 1 shows the block diagram of each IFA (lumi-
nance, R-G, or B-Y). The main difference between the
achromatic IFA and the chromatic one lies in the signal
decomposition stage and the psychometric look-up tables
(LUT). In the chromatic IFAs, the luminance contrast em-
ployed in the achromatic IFA is replaced by the chromatic
difference introduced in Sec. 2.

To compare images in a given opponent axis, the pair
of images are first processed by a lowpass pyramid to gen-
erate a multiresolution pyramid. Note that for chromatic
IFAs the normalization (Eq. (2)) is performed in this stage
as well. The signal decomposition then transforms these
pyramid images into a set of orientation-specific contrast
images whose units match the units used in our psychophys-
ical experiments. Based on the visual channel being pro-
cessed and the image content, the psychometric selector
chooses the appropriate psychophysical results from the
LUT and interpolates them when it is necessary. The chan-
nel response predictor then applies these psychophysical
results to convert the difference between contrast images
to probability maps for each channel. The limited memory
probability summation combines probability maps across
visual channels (resolution,orientation) to produce the final
probability map, which indicates the probability of seeing
a difference between the two input images at each spatial
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location along a given perceptual axis.

4. Thresholds in Chromatic Difference
Discrimination

In the chromatic IFAs, the image is decomposed into a
set of visual channels whose responses are a function of
thresholds measured in the psychophysical experiments.
Since each visual channel is supposed to model the re-
sponses of neurons which are highly selective in spatial
position, spatial frequency, and orientation, thresholds that
are used in the chromatic IFAs should be obtained with
stimuli whose spatial properties are localized with respect
to those factors as well. In our experiment, this was done
by using physiologically motivated Gabor patches1.

4.1. Method
Isoluminant Gabor patches were generated on a calibrated
24-bit color monitor. Each stimulus consisted of a back-
ground color, a reference Gabor patch, and a test Gabor
patch (see Fig. 3). The background was a uniform field
with color (Y, o2, o3), where Y was fixed to 6.89 cd/m2 (5
lux) in all sessions.

When the R-G opponent channel was tested, the value
of o2 was called the mean chromaticity level for that ses-
sion. The value of o3 was chosen so that our monitor could
display as large a variety of Gabor patches as possible.
Similar idea was implemented, when the B-Y opponent
channel was tested. Six background colors were selected
in this fashion: three for the R-G channel and three for the
B-Y channel.

Once a background color was chosen, the Gabor patches
were created by varying the values along the opponent axis
to be tested while keeping the other two axes constant.

For each session, eight test patches with different lev-
els of chromatic difference were prepared. The chromatic
difference of each test patch was slightly above that of the
reference patch. A fixation cross was at the center of the
uniform color background throughout the session. Each
trial was initiated by pressing the middle mouse button.
The reference patch and one of the test patches were then
presented at a horizontal eccentricity of 2.5 cycles to either
side of the fixation cross. Each test patch was presented 25
times. The test patches were presented in random order;
and the side of presentation (left vs. right) for the test and
reference patches was randomized as well.

The subject was asked to indicate which patch had lower
chromatic difference from the background. The stimuli
were displayed until the subject responded. After each in-
correct response, an auditory feedback was provided. The
results were processed using probit analysis.

Chromatic difference increment thresholds were mea-
sured for spatial frequencies 1, 2, 4, 8, and 16 cpd under
six adaptation chromaticity levels.
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Figure 2: Discrimination thresholds as a function of reference

chromatic difference for subject WW measured along the R-G and
B-Y axis when (a) the mean R-G chromaticity level is 0.2 and (b)
the mean B-Y chromaticity level is 0.2

4.2. Results and Discussions
Figures 2a and 2b show the discrimination thresholds mea-
sured using isoluminant Gabor patches modulated along
R-G or B-Y dimension under one of the six background
colors, respectively. These curves describe the sensitivity
of the human visual system along the R-G or B-Y axis.

From Fig. 2, we see that the threshold is approximately
constant in most conditions. The thresholds at frequency
16 cpd are substantially higher compared to other frequen-
cies. This is consistent with prior results8, 9 indicating that
the R-G and B-Y channel function like low-pass filters.
The threshold is insensitive to the reference chromatic dif-
ference (except when it is zero) and to the mean chromatic-
ity level. This constancy of threshold suggests that the nor-
malized opponent channels used here (o2, o3) are psycho-
logically plausible. Furthermore, this constancy allows us
to reduce the number of parameters characterizing the sen-
sitivity of the human visual system in the R-G and B-Y
channels.

5. Simulation Results

Figure 4 show an example of the CIFA applied to a com-
plex image. In this figure, we distorted the colors of the
original image by changing the hue. The distorted image
appear greenish compared to the original. In particular,
the yellow around the body of the parrot in the left ap-
pears brighter and more greenish in the distorted image.
This agrees with the predictions of the luminance and R-
G IFAs. The color around the head of the parrot in the
right appears less red in the distorted image. The R-G IFA
predicts that, too.

6. Conclusion

In this paper, we developed a human visual model for a
color image fidelity assessor. The CIFA extends Taylor el
al' s achromatic IFA to color. Similar to Taylor el al' s work,

IS&T's 2001 PICS Conference Proceedings

150



our model attempts to combine the results of electrophys-
iological and psychophysical experiments for measuring
perceived image fidelity. We designed a psychophysical
experiment, the results of which can be applied directly
to our model. By doing so, we have kept a consistency
between the model and the psychophysical data that are
used in the model. As part of our development, we derived
a novel color descriptor that can be used to describe effi-
ciently the color percept of the human visual system. We
applied the CIFA to several examples4 for a wide range of
image contents and distortion types. From informal visual
inspection, we see that the CIFA makes predictions that are
similar to what a human observer perceives. In general,
from our simulations, we conclude that the CIFA provides
good predictions over a wide range of distortion types.
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Figure 3: Sample stimulus of a trial in the chromatic difference
discrimination experiment
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Figure 4: CIFA predictions for hue change. (c)–(e) are the CIFA
probability maps for (a) theparrotsimage compared with (b) the
parrots image distorted by changing the hue. The probability
maps (c), (d), and (e) correspond to the probability of visible dif-
ferences in luminance, R-G, and B-Y channels, respectively. The
viewing distance in the CIFA was 15 times image height.


